5 research outputs found

    Grasping for the Task:Human Principles for Robot Hands

    Get PDF
    The significant advances made in the design and construction of anthropomorphic robot hands, endow them with prehensile abilities reaching that of humans. However, using these powerful hands with the same level of expertise that humans display is a big challenge for robots. Traditional approaches use finger-tip (precision) or enveloping (power) methods to generate the best force closure grasps. However, this ignores the variety of prehensile postures available to the hand and also the larger context of arm action. This thesis explores a paradigm for grasp formation based on generating oppositional pressure within the hand, which has been proposed as a functional basis for grasping in humans (MacKenzie and Iberall, 1994). A set of opposition primitives encapsulates the hand's ability to generate oppositional forces. The oppositional intention encoded in a primitive serves as a guide to match the hand to the object, quantify its functional ability and relate this to the arm. In this thesis we leverage the properties of opposition primitives to both interpret grasps formed by humans and to construct grasps for a robot considering the larger context of arm action. In the first part of the thesis we examine the hypothesis that hand representation schemes based on opposition are correlated with hand function. We propose hand-parameters describing oppositional intention and compare these with commonly used methods such as joint angles, joint synergies and shape features. We expect that opposition-based parameterizations, which take an interaction-based perspective of a grasp, are able to discriminate between grasps that are similar in shape but different in functional intent. We test this hypothesis using qualitative assessment of precision and power capabilities found in existing grasp taxonomies. The next part of the thesis presents a general method to recognize oppositional intention manifested in human grasp demonstrations. A data glove instrumented with tactile sensors is used to provide the raw information regarding hand configuration and interaction force. For a grasp combining several cooperating oppositional intentions, hand surfaces can be simultaneously involved in multiple oppositional roles. We characterize the low-level interactions between different surfaces of the hand based on captured interaction force and reconstructed hand surface geometry. This is subsequently used to separate out and prioritize multiple and possibly overlapping oppositional intentions present in the demonstrated grasp. We evaluate our method on several human subjects across a wide range of hand functions. The last part of the thesis applies the properties encoded in opposition primitives to optimize task performance of the arm, for tasks where the arm assumes the dominant role. For these tasks, choosing the strongest power grasp available (from a force-closure sense) may constrain the arm to a sub-optimal configuration. Weaker grasp components impose fewer constraints on the hand, and can therefore explore a wider region of the object relative pose space. We take advantage of this to find the good arm configurations from a task perspective. The final hand-arm configuration is obtained by trading of overall robustness in the grasp with ability of the arm to perform the task. We validate our approach, using the tasks of cutting, hammering, screw-driving and opening a bottle-cap, for both human and robotic hand-arm systems

    On Computing Task-Oriented Grasps

    Get PDF
    This paper addresses the problem of optimal grasping of an object with a multi-fingered robotic hand for accomplishing a given task. The task is first demonstrated by a human operator and its force/torque requirements are captured through the usage of a sensorized tool. The grasp quality is computed through a task compatibility criterion. Grasp synthesis is then formulated as a single constrained optimization problem, generating grasps that are feasible for the hand’s kinematics by maximizing the corresponding task-oriented quality criterion and ensuring grasp stability. The method was validated on a human hand model and is shown to be easily adapted to different hand kinematic models

    A modular approach to learning manipulation strategies from human demonstration

    Get PDF
    Object manipulation is a challenging task for robotics, as the physics involved in object interaction is com- plex and hard to express analytically. Here we introduce a modular approach for learning a manipulation strategy from human demonstration. Firstly we record a human perform- ing a task that requires an adaptive control strategy in differ- ent conditions, i.e. different task contexts. We then perform modular decomposition of the control strategy, using phases of the recorded actions to guide segmentation. Each mod- ule represents a part of the strategy, encoded as a pair of forward and inverse models. All modules contribute to the final control policy; their recommendations are integrated via a system of weighting based on their own estimated er- ror in the current task context. We validate our approach by demonstrating it, both in a simulation for clarity, and on a real robot platform to demonstrate robustness and capacity to generalise. The robot task is opening bottle caps. We show that our approach can modularize an adaptive control strategy and generate appropriate motor commands for the robot to accomplish the complete task, even for novel bottles

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world
    corecore